

Electromechanics

First we present an overview of electromechanical devices required
for the implementation of expressive possibilities in automata. We
also pay attention to the circuitry involved. In a second chapter (to be
developed even further later) we will delve deeper in the low level
software/firmware.

1.- Automata where the sound originates from striking

Examples: player pianos (strike and hold), percussion robots (strike
and bounce back).

Technical solution: precise control of the striking force by modulation
of the width of the excitation pulse.

Electromechanical parts: moving anchor solenoids, tubular solenoids,
rotary solenoids.

Different types of solenoid can be used depending on the
requirements: tubular solenoids (push type and pull types do exist)
being our favorites in all cases where the force has to be exerted in a
vertical plane.

 The picture on the
left shows a large Black Knight tubular push type solenoid, used for
the concussion of a couple of heavy 'bass' castanets as used in our
<Simba> robot. In the picture on the right we see a Black Knight
tubular pull solenoid used for lifting the pallets in an automated bass
accordion. For piano Vorsetzers, push types become the obvious

file:///C:/LogosWebsite/instrum_gwr/simba.html

choice. In the
picture we see Lucas Ledex tubular solenoids with rubber pushers we
designed ourselves. If the striking force is in a horizontal plane, it is
generally better to use rotating anchor solenoids as used in organ
building. The reason is that tubular solenoids operating on a horizontal
plane suffer considerably from friction and need springs to return
them to the original position after striking. Gravity cannot be used to
advantage in this case. Despite this we have applied them in our
<Tubo> robot, as there was no alternative solution.

The picture shows a 10 Newton double coil
register magnet as produced by August Laukhuff. This type is
extremely quiet in operation but not very fast. Brand names for the
tubular solenoid types useful in musical robots are Lucas Ledex - now
Saaia Burgess -, Kuhnke, Tremba, and Black Knight. For rotating
anchor types, August Laukhuff used to be a good source, but they
went of of busines in 2021. Heuss may be or become an alternative
source nowadays. Below are some more applications of different types
of rotating anchor solenoids used in automated percussion
instruments:

file:///C:/LogosWebsite/instrum_gwr/tubo.html
file:///C:/LogosWebsite/instrum_gwr/tubo.html

If pulse-only operation is required - as in automated struck percussion,
drums, bells etc. - the drive circuit becomes extremely simple:

For ease of interfacing to standard TTL logic levels, we invariably
prefer to use logic level mosfets that turn fully on at 5V such as the
IRL640. The pulses whose durations determine the striking force
generally come from an output of a small microcontroller, although
programmable 16-bit hardware timers (such as Intel 8254) can be used
as well. These hardware timers have the advantage that it becomes
easy to implement timing resolutions in the order of 0.1 microseconds,
using a 10 MHz crystal. With microcontrollers such as the popular
Microchip 18F PIC series, we cannot achieve a resolution of much
better than approx. 5 microseconds. The resolution depends on how

many timed pulses you want to get from a single controller. For a 16-
output design, the resolution will tend to be rather in the order of 27
microseconds.

The circuit above is about the easiest one could imagine to implement
note-on with velocity, including a hold as required for instruments
such as pianos and touch-sensitive organs. The circuit uses a single
positive supply voltage. The disadvantage is that a lot of power
resistors - one for each note - are required, leading to larger current
consumption than strictly needed. From an engineer's point of view it
might appear silly to use such a circuit, as you might think it were
easy enough to control the power mosfet with PWM. The trouble with
PWM however is that it causes audible artifacts from the solenoids. If
you try to overcome these by setting the fundamental frequency way
above audio, however, you will run in trouble with the dissipation and
electromagnetic radiation (EMC).

Example projects:

• Player piano
• Troms
• Tubi
• Vibi
• Simba
• Xy
• Rotomoton
• Toypi

The same technology can be applied to the damping of the sound in
some instruments, such as the vibraphone. The circuitry for a variable
pulse combined with a constant hold voltage is shown below in a
circuit as we used it in our <Harma> robot. This circuit is a further
development of a similar circuit using darlington transistors as
designed by my colleague Trimpin for his player piano, build to make
performances of Conlon Nancarrow's piano rolls from midi-files
possible.

file:///C:/LogosWebsite/instrum_gwr/harma.html
file:///C:/LogosWebsite/instrum_gwr/toypi.html
file:///C:/LogosWebsite/instrum_gwr/rotomoton.html
file:///C:/LogosWebsite/instrum_gwr/xy.html
file:///C:/LogosWebsite/instrum_gwr/simba.html
file:///C:/LogosWebsite/instrum_gwr/vibi.html
file:///C:/LogosWebsite/instrum_gwr/tubi.html
file:///C:/LogosWebsite/instrum_gwr/troms.html
file:///C:/LogosWebsite/instrum_gwr/playerpiano.html

The circuit can also be created with a small p-channel FET instead of
the PNP transistor. The diagram below shows the circuit as we applied
it in <Qt> but also - with different power supply voltages and
solenoids - in the latest models of our player piano.

By applying PWM (preferably using the lowest possible frequencies
for reasons mentioned above) to the hold input, aftertouch can be
implemented as well. The effectiveness of such an approach is highly
dependent on the mechanical design of the solenoids or valves.
Conical valves are the optimum choice if aftertouch is to be
implemented. In the <Bomi> robot this was applied.

The positive hold voltage should never be taken larger as the
maximum allowable 100% duty cycle voltage for the given coil.
Lower voltages will lead to reduced holding force. For player-pianos,
this voltage should be choosen such that the force is just enough to
hold the key down. The negative pulse voltage should be 4 to 10 times
the nominal voltage for the coil. Do not go beyond the maximum rated
voltage however, because the insulation of the winding may not
survive it. Practical pulse durations vary between fractions of a
millisecond to ca. 50 ms. The higher the voltage, the shorter the pulses
can be, and the faster the maximum possible repeat frequency.
Magnetization time, frictional losses and hysteresis are limiting
factors. If negative voltages larger than -24 V are used, the gate of the
negative pulse MOSFET has to be protected with a zener diode.
IRF540-type MOSFET's or even IGBT's will be a better component
choice than IRL640 in such cases.

file:///C:/LogosWebsite/instrum_gwr/Bomi.html

An alternative circuit makes use of a fast optocoupler (6N137) to
drive the negative voltage mosfet:

A note on springs:

If push-type tubular solenoids are used to exert a vertical force
downwards, as in the case of the piano-vorsetzer, it is generally

necessary to fit a helical spring inside the shaft of the solenoid.
Although on pianos, the return force of the key generally tends to be
large enough to bring the solenoid anchors back, this is a bad practice
as it slows down the reaction speed obtainable from the robot.
Moreover, the possibilities for nuance will be greatly reduced. The
springs should be calculated and fabricated to have just enough force
to lift the anchors up at rest. Their length should correspond to the
required traject of movement. It should also be noted that these
springs need replacement after about 3 or 4 years of daily operation,
since they lose force due to material fatigue.

Anchor shapes for tubular solenoids

The drawing below shows the three basic types of shapes for the
moving anchors inside tubular solenoids. Both the push and the pull
version (if different) are shown.

The first type - the most common in the industry - develops the largest
holding force, since the anchor is in flat contact with the end pole of
the electromagnet wound on the armature (drawn in red). The big
disadvantage is that this type of anchor causes a very high noise level
at the moment the anchor hits the pole. This applies even more to the
pull type of the same shape. The noise can be substantially damped
with a felt washer but obviously this leads to a reduction of the
holding end force. The second type shows a tapered end. This type has
a much more gradual force against applied voltage characteristic.
Therefore we have found that this type is the optimum choice for
musical robots in many cases. The noise is damped here as soon as we
insert a spring over the tapered end inside the coil former. The
smoothest operation, but also the lowest holding force, is obtained
with the third type, where the anchor can move freely through the coil.
In this case there is no real holding force and the anchor behaves
somewhat like a spring on varying loads. This type can be used both
for pushing and pulling. The disadvantage is, besides low efficiency,
that fitting return springs as well as end stops is mechanically rather
difficult.

A note on human fingers...

When human fingers activate keys, for example on pianos and organs,
there is never a problem with noises at key release. Potential noises
are damped by the design of the mechanics of the instrument.

However, with instruments such as the accordion, replacing human
fingers with solenoids does cause noise problems. In these
instruments, when played by human fingers, the keys are released with
a damping caused by the stiffness and mass of the human fingers.
When we replace these fingers with (tubular) solenoids, the speed
with which the keys are released becomes much higher, resulting in
lots of noise caused by the sudden (spring-loaded) closing of the
valves. This problem particularly plagued the design of our automated
accordion <Ake>. It is also relevant for the valve action of valve-
operated brass instruments. We propose three different approaches to
solving this problem: the first one involves applying PWM on note-off
commands such that the solenoids lose magnetization only slowly.
However the load on the firmware, particularly for highly polyphonic
instruments, quickly becomes prohibitive. Furthermore the remarks
with regard to PWM mentioned before do apply here as well. A
second, alternative solution makes use of analogue circuitry in

hardware: Here we
place a large capacitor in parallel over the solenoid. The capacitor is
charged on turn-on by the mosfet via Rr. This resistor should be sized
at about 5 times the value of the DC resistance of the solenoid used.
When the mosfet is turned off, the capacitor discharges via the series
diode into the solenoid. The RC time corresponds to the product of the
solenoid's DC resistance and the value of Cr. Practical values for Cr
are in the range of 1mF to 10mF. Since capacitors with these values
invariably have to be electrolytes, they tend to be rather large. The RC
time should be below the inverse of the maximum repetition rate for
notes (in Hz), one wants to achieve on the instrument. A third
solution, also involving analogue hardware, operates similarly but this
time on the gate of the mosfet. Although the circuit is very simple and
does not make use of large electrolytic capacitors, it suffers from the
large spread in the analog gate drive characteristics of the power
mosfets we prefer to use. The circuit also affects turn-on time. But the
main problem here, using the mosfets as slow switching devices, is
that it will increase their dissipation quite a bit. Thus the space (and
expense...) you gain by avoiding the large capacitors in the second
solution is lost in the space (and cost) needed for the increased cooling
requirements on the power mosfets. All of the proposed methods have
been but into practice by us. Our favorite for a long time was the
second one, despite the large space penalty involved. For the <Pianet>
robot, we experimented with the soft-release via the gate circuit
method:

One has to experiment a bit with the C and R values here as they
depend quite a bit on the characteristics of the MOSFET used. Also, it
is important to use a low drop diode here: a Schottky type, or even a
germanium diode. If 3V3 processors are used, this will be mandatory
as the choice in power MOSFET's turning fully on with less the 3 V,
is pretty limited.

However, the problem for all solutions presented here is that they
invariably introduce a limitation on note repetition speed. Any
solution we can think of for this problem requires looking ahead in
software: if we know what the next note will be, we can adapt the
release time accordingly. Obviously, this is not possible for a robot
that is supposed to operate in real time and without any latency.

A note on the law of the hammer

Instruments whose sound is produced by striking an object with a
beater follow the same physical laws that govern those of the hammer.
The energy of the collision equals the mass of the hammer multiplied
by the square of the speed at the moment of the collision divided by
two:

Therefore it seems more profitable to increase and control the speed of
the hammer rather than its mass. Increasing the speed was
traditionally (in pneumatically driven automata) done mostly by using
a longer handle on the hammer. This approach, however, is severely
detrimental to repetition speed, since the movement trajectory
becomes much longer as well. With solenoid-driven beaters, the mass
of the anchor has to be taken into account when it is rigidly coupled to
the beater. Magnetization time limits will put limits on the maximum
obtainable speed. The smaller the mass of the anchor, the faster the
speed can be, but of course the impact will also be lower. As a general
rule, one should take the mass of the hammer to be somewhere
between one tenth and one twentieth of the mass of the object to be
struck. From there one can start calculation of the required trajectory
of movement in order to get the desired maximum amplitude. This
will lead to quite good specifying possibilities for the solenoids to be
used. Experimentation will be mandatory in almost all cases. It might
be good to review the elementary mechanics describing collision in
general:

Note that for an object at standstill, the second term on the left will
always be zero. The value of v4 will be proportional to the amplitude
obtained. It depends on the elasticity of both beater and object.

Applying textbook physics formulae it is fairly easy to properly rate
and design solenoid-driven hammers. If we take s as the trajectory of
the hammer (we assume the beater is rigidly connected to the anchor
of the solenoid such that we can consider the moving assembly to
have total mass m), then, given the response time of the solenoid (this
data can be read from the datasheets provided by the supplier for a
wide variety of operating conditions), we can calculate the force
involved using Newton's second law:

A note on clamping diodes:

Inductors switched by semiconductors (MOSFETS, IGBT's,
transistors...) almost invariably are used with a diode across them to
dampen the inductive reaction of the coil at turn off. This practice is
dictated by the need to protect the switching semiconductor against
voltage surges. Without protection diode the voltage peak can reach
values over ten times the nominal voltage applied over the circuit. The
problem one can encounter with this diode, is that it extends the
duration of the magnetisation in the coil. To speed-up the solenoid
movement, one could use a power zenerdiode instead of a normal
silicon diode, rated for somewhat below the maximum allowable
voltage over the semiconductor. However such diodes tend to be
rather expensive. If bidirectional solenoids are used, a quite clever
trick can be applied to speed-up the action and at the same time

implement an electric return spring: In this
circuit, the inductive reaction is used to activate the second half of the
winding as soon as the diode starts to conduct.

2.- Automata where the sound originates from a wind flow

examples: pipe organs, accordions, reed organs, wind instruments
(flutes, brass and reed-woodwind)

2.1: - Global wind pressure control:

This can be easily achieved through frequency control of the
compressor motor. The speed of the possible modulations is limited
by the large inertia of the motor and compressor blade combination.
The modulation affects the entire instrument. The motors should be 3-
phase AC induction motor types. Collector motors (universal AC/DC
motors) cannot be used for they are too noisy in operation. We once
used one in our <Melauton> robot and could not avoid the 'vacuum-
cleaner' effect...

Example projects:

• Krum
• Vox Humanola
• Piperola
• Bourdonola
• Harma
• So
• Autosax (versions 2 and 3)
• Bono (versions 1 and 2)
• HarmO

file:///C:/LogosWebsite/instrum_gwr/harmo.html
file:///C:/LogosWebsite/instrum_gwr/bono.html
file:///C:/LogosWebsite/instrum_gwr/autosax.html
file:///C:/LogosWebsite/instrum_gwr/so.html
file:///C:/LogosWebsite/instrum_gwr/harma.html
file:///C:/LogosWebsite/instrum_gwr/bourdonola.html
file:///C:/LogosWebsite/instrum_gwr/piperola.html
file:///C:/LogosWebsite/instrum_gwr/voxhumanola.html
file:///C:/LogosWebsite/instrum_gwr/krum.html
file:///C:/LogosWebsite/instrum_gwr/melauton.html

• Bomi
• Pos

The easiest practical solution invariably involves the use of a
programmable industrial motor controller module as made by Siemens
(Sinamics series), Lust Gmbh, Control Techniques, Hitachi.... These
controllers all feature a 0-10V dc control input for speed control of the
3-phase AC motor. Details on programming these controllers can be
found in the relevant sections of the projects under the hyperlinks
provided above. We found - with hindsight - that it was not worth the
trouble of designing these things ourselves, since the cost turned out to
be higher than the readily available solution.

The steering DC voltage is most easily derived nowadays from a
PWM output on a small microcontroller. The PWM is simply filtered
with an RC combination and rescaled to the required 0-10V range.
Often this rescaling step can even be left out, since most
motorcontrollers can be programmed for the optimum range.
Obviously a DAC convertor can be used as well, but generally
speaking it is overkill in most cases, since the speed of change is very
low and it costs us a minimum of about 8 I/O pins on the
microprocessor. For faster braking, it is advisable to program the
motor controller to use DC injection in the windings. Braking resistors
may be used as well.

Note that wide control of operating pressure on reed pipe based
instruments can be very problematic, since reed pipes do not maintain
their tuning very well when exposed to varying pressure. This
problem is non-existant with flue pipes. These pipes also only
maintain pitch over a small range of pressure variation, but at least
they always return to the original pitch as the wind pressure returns to
the nominal tuning value.

A special consideration should be given to the implementation of wind
pressure and flow control in reed organ type instruments such as reed
organs, accordion, concertinas, melodicas and such more. In these
instruments pitch is largely unaffected by windpressure and
windpressure mainly determines the sound volume. Other than in pipe
organs, here it is not a good idea to regulate wind pressure to any
constant value. Instead, motor speed -and thus airflow- ought to be a
function of the notes playing and the registers effectively drawn. Keep
in mind that a low 29 (the lowest key on an average reed organ) draws
up to 64 times more air than a high 101 (the highest note on larger
reed organs). A simple lookup algorithm should be build into the
firmware of the motor controller:

For i = 29 To 101
Note_Air[i -29] = ((101 - i) / divider) + 1
Next i

The lookup thus produced (we used a divider value of 16) should be
multiplied with a factor according to the register(s) drawn. For an 4'
register x2, for 8' x4, for 16' x 8. The value thus obtained should be
added to the value of the user requested volume setting. A worked out
and tested firmware for such an implementation can be found in the
website pages documenting our <HarmO> robot. Obviously the motor

file:///C:/LogosWebsite/instrum_gwr/pos.html
file:///C:/LogosWebsite/instrum_gwr/Bomi.html

controller used has to be programmed for maximum possible reaction
speed. If such 'intelligent' motor control is not implemented, the
instrument will be very noisy and often leaky.

Although, as said, the used of standard motor controllers is most often
the cheapest and easiest sollution, there are cases were the design of a
suitable motorcontroller becomes mandatory. The storm wind module
in our <Thunderwood> robot is operated by a blower with a 3-phase
400 Hz / 208 V drawing 0.14A current. Standard controllers are not
suitable in this case, so we designed a motor controller using a
Microchip 24EP128MC202 microprocessor. The circuit we developed
is:

The firmware implements braking by reversing the direction of
rotation. The base frequency of the PWM is 117 kHz and used to
generate variable amplitude sinewaves shifted in phase angles of 120
degrees. The motor frequency can be controlled between 40Hz and
400Hz and motor voltage is proportional to motor speed, thus
protecting the motor against overheating. The firmware is available as
well.

file:///C:/LogosWebsite/instrum_gwr/thunderwood/picworks/TW_Storm.bas
file:///C:/LogosWebsite/instrum_gwr/thunderwood.html

For our automated siren in <Balsi. we used a very similar approach,
but here we implemented a full PID algorithm in the firmware, as
precise speed control was mandatory in order the generate precise
pitches. The motor control firmware builds on a pretty straightforward
PID regulating loop. Here is the algorithm, coded in Power Basic:

FUNCTION PID (BYVAL sollvalue AS SINGLE, BYVAL seinvalue
AS SINGLE, BYVAL OPT kp AS SINGLE, BYVAL OPT ki AS
SINGLE, BYVAL OPT kd AS SINGLE) EXPORT AS SINGLE

' The machine constants have to be passed on the first call
only. Seinvalue is the measured reality value, generaly
derived from a sample. Sollvalue is the goal we want to
achieve. The function returns the correction factor for
regulation and should be used in a regulation loop.

STATIC propconstant, integrationconstant,
differenciationconstant AS SINGLE

STATIC oldfout, iterm AS SINGLE

LOCAL fout, pterm, dterm AS SINGLE

IF kp THEN propconstant = kp

IF ki THEN

IF ki <> integrationconstant THEN RESET
iterm ' reset! integrationconstant = ki

END IF

IF kd THEN

IF kd <> differenciationconstant THEN
RESET oldfout ' reset differenciationconstant
= kd

END

IF fout = sollvalue - seinvalue ' calculate the error pterm =
propconstant * fout. Proportionality term iterm = iterm +
(integrationconstant * fout). Integration term dterm =
differenciationconstant * (fout - oldfout)

oldfout = fout

FUNCTION = pterm + iterm + dterm ' return value for the
PID correction signal

END FUNCTION

Here is the circuit wherein this was implemented:

2.2:- Using fans

Regular fans as used for cooling in all sorts of electronic devices make
perfect wind sources for sounding cavity resonators. Such resonators
work best on low pressure turbulent suction wind. Here we are talking
only about DC operated fans using BLDC motors, generally operating
on voltages such as 5V, 12V or 24V. Some types have a separate wire
connected to a sensor and allowing you to read the speed of rotation.

Example project:

• Whisper

Controlling the speed of rotation of fans is less straightforward than
one would think. The reason being that the motors driving the blades
of fans are BLDC motors. They contain quite some complicated
circuitry to commute the different windings on the anchor. If you try
to control such fans with a PWM voltage, you will get very unreliable
results and eventually you will also ruin the fan. It is mandatory the

file:///C:/LogosWebsite/instrum_gwr/whisper.html

steer these motor-assemblies with pure DC. This calls for a reliable
PWM to DC convertor.

Here are two tested and usefull solutions:

The first circuit has the advantage that the motor can be fully floating
with respect to ground. However, finding suitable transformers is
often a practical problem. The second circuit is simple, but you have
to make sure the inductor can handle the required current. The
capacitor must be a low ESR type.
Some -generally somewhat more expensive- models are available that
can be controlled with PWM signals directly. Sanyo has quite some
types in their catalogue. Here is a circuit drawing for a second
<Whisper> design using fans with PWM control inputs:

In this application we did not use the sensor signal wire, drawn in blue
in the above schematic, but it's easy and straightforward to implement
if needed. Note that in this design we used 12V linear voltage
regulators as high-side switches. These are 4-lead devices with an
enable input. The datasheet gives no details as to the allowable
switching speed on this input; not a problem in this application but be
warned if ever you try to use these components in fast switching
applications...

2.3:- Wind flow control: through valves.

These can be operated pretty fast, driven by either stepping motors or
servos. Valves can be used to implement a tremulant in some cases.

Example projects:

• Ake
• Krum
• Qt
• HarmO
• Bomi

In the accordion robot <Ake> we constructed a large 4-way valve

file:///C:/LogosWebsite/instrum_gwr/Bomi.html
file:///C:/LogosWebsite/instrum_gwr/harmo.html
file:///C:/LogosWebsite/instrum_gwr/qt.html
file:///C:/LogosWebsite/instrum_gwr/krum.html
file:///C:/LogosWebsite/instrum_gwr/ake.html

capable of smooth switching between suction and pressure wind with
all gradations in between. Our first idea to operate this valve with a bi-
directional solenoid didn't work very well. The later use of a stepping
motor in combination with a Melexis position sensor works nicely. In
<Qt> we used a similar design for the wind flow control.

Note that commercially available solenoid valves can almost never be
used in this area of applications. They are not available with large
enough orifices, they can generally only operate at pretty high
pressures (1 - 20 Bar) and last but not least, they make a lot of noise.

The stepping motors are inherently a bit noisy. If this is to be avoided,
a very good solution is to use soft shift solenoids as produced by
Lucas Ledex. They provide very smooth operation and work very well
for flow regulation and tremulants in organs. However, their force is
limited. The application of such a device in combination with a
conical valve (see further) under PWM control in our <Bomi> robot
proved to be a great success.

The bellows can be operated either with a motor and a crank, or with a
motor coupled to a trapezoidal threaded rod, or else through a (very
expensive) linear motor. Good and responsive control is possible.

Example projects:

• Bako
• Piperola
• Vox Humanola

If a trapezoidal threaded rod is used, it is best to drive it with a
brushed DC motor and an appropriate controller. The starting torque
should be very high to overcome initial friction. Sensors are required
to limit the trajectory of the bellows. For precise control of the wind
pressure, the low pressure sensors offered by Freescale may form the
basis of a good PID-controlled loop. (Cf. Bako).

2.4.: Individual control of notes:

Here the use of conical valves operated under PWM becomes
mandatory. The picture shows the mechanism. The cone is covered
with fine leather or a synthetic material such as polypel.

 Conical valves can also be
operated with tubular solenoids. As an alternative, moving coil valves,
which can be made from re-engineered loudspeakers, can be used as
well. In the latter case they can be driven with bipolar analogue DC

file:///C:/LogosWebsite/instrum_gwr/voxhumanola.html
file:///C:/LogosWebsite/instrum_gwr/piperola.html
file:///C:/LogosWebsite/instrum_gwr/bako.html

current (double H-bridge). This technology not only allows control of
the individual note attack, but also note aftertouch. Furthermore, it is
possible to operate each note with an individual pump, driven by a

solenoid, as we did in <Puff>. The picture
shows the mechanism involved: underneath is a tubular solenoid
(Lucas Ledex type) pushing the anchor on the carbon-compound
plunger inside the glass cylinder (Airpot). In this case we used a
single-pulse driving circuit as described before for use in percussion
instruments. However, if you go that far, it becomes difficult to obtain
sustained notes unless at least two pumps are used for each note. With
a single coil/pump combination you can get at the most a steady
flatterzunge (flutter-tonguing).

If the requirements as to the control range of attack and/or aftertouch
are not too critical, flat solenoid-driven pallets can be used.

 The types shown on the pictures are
made by August Laukhuff: the left one has a 35 mm pallet, the right
one 40 mm. These types can easily be converted to operate conical
valves by exchanging the flat pallets with conical ones, as shown in
the first picture under this heading. For good velocity control, the
original springs must be replaced with a stronger type. Details can be
found in our pages on the development of our 6-octave quartertone
organ <Qt>.

file:///C:/LogosWebsite/instrum_gwr/qt.html

2.3:- Wind modulation and control through bellows.

The laws governing airflow control through round flat valves are:

The fundamental problem with gradual control of valves with
solenoids is that the trajectory for the opening versus applied voltage
is normally very steep, and furthermore the working trajectory is
different for opening and closing. The graphs below give typical
curves:

The last curve depicted represents the best possible compromise,
obtained by using conical valves in combination with a much-
increased spring force.

Examples of projects:

• Qt (flat valves with individual note aftertouch)
• Puff (individual solenoid-driven pumps for each note)
• Thunderwood (bird mechanism)
• Bomi (conical valves with individual note aftertouch)

In some of our early automata (<Piperola> and <Vox Humanola>) we
used direct-acting solenoid valves to steer the windflow to the pipes.
Such valves cannot be used off the shelf unless you are prepared to
live with the loud clicking noises these valves produce at switching.
To overcome this, we shortened the ferromagnetic anchors inside
these valves by some 3 to 5 mm on the lathe, replaced the back end
with a circular piece of felt, and reduced the force of the return
springs. Although it is possible to use these valves for velocity control
of the note attacks by steering them with PWM or variable DC, the
results are quite disappointing because the valve response is quite
unpredictable. Ultimately, the valves work nicely as switches, but
when you make the final bill, it comes out to be about twice as

file:///C:/LogosWebsite/instrum_gwr/voxhumanola.html
file:///C:/LogosWebsite/instrum_gwr/piperola.html
file:///C:/LogosWebsite/instrum_gwr/Bomi.html
file:///C:/LogosWebsite/instrum_gwr/thunderwood.html
file:///C:/LogosWebsite/instrum_gwr/puff.html
file:///C:/LogosWebsite/instrum_gwr/qt.html

expensive as using regular valves as described before. The only areas
of musical automata where these solenoid valves become the device of
choice are automated, tuned, membrane-driven car horns or ship horns
driven by compressed air (1 to 6 Bar pressure). <Toetkuip> and
<Klankboot> are two open-air projects that illustrate this.

 Solenoid valves can be operated either
on AC or DC, but for automated instrument use, only DC should be
considered, since when driven with AC you will get a 50Hz buzz
enriched with overtones from each of them...

A note on conical valves:

As noted above, the use of conical valves becomes mandatory if one
wants to implement fine individual note aftertouch in windblown
instruments. Since the solenoids to be used have a limited trajectory of
movement (Tr) and proper design entails that the surface of the inlet
orifice should equal the surface of the valve outlet (the surface of a
cone segment or the side surface of a frustum) when fully opened, it
follows that the angle of the cone becomes an essential design
parameter. To facilitate calculations, we provide the essential design
equations below:

file:///C:/LogosWebsite/instrum_gwr/toetkuip_eng.html

The technical problem here is in the construction of the valve seating,
rather than the valve cones themselves. The latter can be fabricated
easily on the lathe or purchased from sources such as A.Laukhuff. The

smaller the diameter, the smaller the angle, and they can be ordered in
7 different diameters. But in order to make the conical holes in the
windchest one will face the problem of milling holes to these exact
angles, not conforming to standard available conical mills. Most of the
time it cannot be done on the lathe for the shapes of regular
windchests (solid plates of wood or a synthetic material) make it
impossible. If you do not have a CNC milling machine, the only
solution we have found was to use custom-made mills that can be used
in a regular drill. This tends to be very expensive. So far we have only
taken this route for our <Bomi> robot, for which we used five custom-
made mills. Of course, once you have a set of suitable mills made, the
tools can be used for many more robots and the price will come down
proportionally.

Here, as an example, is the result of the calculations as performed for
the construction of the conical valves in our <Bomi> robot, using
A.Laukhuff cones. The last two columns give the result of the
calculations if flat valves had been used - for the same orifices: the
regulation superiority of the cones will be obvious.

cone
diameter

top
angl
e

trajectory

diameter
of
equivalen
t orifice

flat pallet trajectory

35mm /
15mm

110° 5.2mm 10 mm >=15mm 2.5mm

25mm /
12mm

100° 5.0mm 7 mm >=10.5mm 1.75mm

20mm /
11mm

85° 6.0mm 5 mm >=7.5mm 1.25mm

16.5mm
/10.2mm

81° 6.0mm 4.3 mm >=6.7mm 1.1mm

13mm/
8.7mm

72° 6.0mm 3 mm >=4.5mm 0.75mm

•

The diameter of the equivalent round orifice should be taken such as
to correspond to the diameter of the inlet of the organ pipes used. By
increasing the trajectory a bit, adjustments to the exact sizings of the
pipe feet are possible. For Laukhuff pallet valves, the maximum
possible trajectory is 10 mm. If you take a trajectory that is too small,
resolution of the regulation possibilities will suffer. In our designs
using these solenoids we limit the traject to about 5 mm, a
compromise between smooth regulation and speed of response. When
performing the calculations, one should be sure to choose the
equivalent orifices such that they are about 10% larger than the
diameters of the wind inlets of the pipes, in order to compensate for
losses due to curvatures, turbulencies and roughness of the valve
surfaces in the windway.

file:///C:/LogosWebsite/instrum_gwr/Bomi.html

In general, the sharper the top angle of the cone, the smoother the
regulation will be, but also, the larger the required trajectory. Thus one
should always try to use the sharpest possible cone for the maximum
possible traject.

To facilitate these calculations we wrote a small computer program to
generate useful lookup tables. The program can also be used for flat
valves, if you specify the top angle as 180°. From comparison of the
generated data, it will immediately become clear why flat valves make
poor regulators but great switches. It can be downloaded freely. (4)
Here is a table with some calculated results. The numbers colored red
reflect the values for standard conical valves available from
A.Laukhuff. The numbers in orange are the results for flat valves
operating on the same orifice as the corresponding conical valve.

angle trajectory orifice cone diam >= flat diam >= flat trajectory

170 3 68 68.6 102 17

170 4 90.7 91.4 136 22.7

160 3 33 34 49.5 8.25

160 4 44 45.4 66 11

160 5 55 56.7 82.5 13.8

160 6 66 68 99 16.5

130 3 10.6 12.9 15.8 2.64

130 4 14.1 17.2 21.1 3.52

130 5 17.6 21.4 26.4 4.4

130 6 21.1 25.7 31.7 5.28

120 3 7.79 10.4 11.7 1.95

120 4 10.4 13.8 15.6 2.6

120 5 13 17.3 19.5 3.25

120 6 15.6 20.8 23.4 3.9

110 3 5.75 8.57 8.62 1.44

110 4 7.67 11.4 11.5 1.92

110 5 9.58 14.3 14.4 2.4

110 6 11.5 17.1 17.2 2.87

100 3 4.2 7.15 6.29 1.05

100 4 5.59 9.53 8.39 1.4

100 5 6.99 11.9 10.5 1.75

100 6 8.39 14.3 12.6 2.1

90 3 3 6 4.5 .75

90 4 4 8 6 1

90 5 5 10 7.5 1.25

90 6 6 12 9 1.5

85 3 2.51 5.5 3.76 .627

85 4 3.34 7.33 5.02 .836

85 5 4.18 9.16 6.27 1.04

85 6 5.02 11 7.53 1.25

81 3 2.16 5.12 3.24 .54

81 4 2.88 6.83 4.32 .72

81 5 3.6 8.54 5.4 .9

81 6 4.32 10.2 6.48 1.08

80 3 2.08 5.03 3.12 .52

80 4 2.77 6.71 4.16 .693

80 5 3.47 8.39 5.2 .867

80 6 4.16 10.1 6.24 1.04

72 3 1.51 4.36 2.26 .376

72 4 2.01 5.81 3.01 .502

72 5 2.51 7.26 3.76 .628

72 6 3.01 8.72 4.52 .753

70 4 1.84 5.6 2.76 .461

70 5 2.3 7 3.46 .576

70 6 2.76 8.4 4.15 .691

60 4 1.15 4.62 1.73 .289

60 5 1.44 5.77 2.16 .361

60 6 1.73 6.93 2.6 .433

Although conical valves allow for a much better flow control than flat
valves, both types show a linear characteristic within their trajectory
of movement. The difference is that the steepness of the curve is much
lower in the case of conical valves. Trajectories other than linear ones
are conceivable and possible: one could use ball valves, parabolic or
hyperbolic, thus realising all sorts of trajectories that can be described
in a second degree equation. We have never gone that far in practice,
because we do not have access to the required machinery to make the
valves and their seats. Only spherical mills as well as a wide variety of
balls are readily available. Here is the required maths relating to the
calculation of ball valves:

It will be clear that as one increases the diameter of the ball, we come
closer to the behaviour of a flat valve. Thus, for optimum regulation
the ball diameter should be as small as is practical, but larger of course
than the orifice to be regulated. The mechanism used for the sound
generation in version 2 of our <So> robot, an automated sousaphone,
makes use of a spherical valve to control the mouthpiece.

A note on tap-tones in organs and wind instruments with fingerholes:

Unrelat
ed to the regulation characterics, there is another say for the use of
conical valves in organ windchests. Particularly when applied in
'digital' on-off switching, conical valves make a lot less noise that flat
valves. From an aerodynamic point of view it seems evident that
cones will reduce turbulencies around the edges of the windpath. But,
this is not the main reason why we got to prefer cones. A flat pallet,
on closing the windinlet to the pipe, causes the cilindrical bore of the
windchest upperplate coupled to the wind channel in the pipe foot, to
resonate. The closing action of the valve is solely determined by the
spring force of the return spring. Much like what happens if we tap
with our flat hand the open end of a piece of pipe. This leads to a quite
noticable pitched percussive sound, a tap-tone in pitch completely
unrelated to the pitch of the organ pipe. By applying conical valves,
this unwanted sound can be reduced considerably. This tap-tone is
typical for pallet valve switched pipes and does never arrise in
traditional mechanical organ building, where sliders in the windchest
are used to switch the notes. These sliders inherently have a relatively
slow attack and decay, which counts for their inferiour clarity of
speach when compared to flat valves.

2.5.: Very fast air pressure modulation:

The best (and cheapest) technique to achieve this in instruments
operating under an air pressure not exceeding 200 mm H20 (20 mBar),
is through large bass loudspeakers placed inside the windchest. These

make very good tremulants as well.

We have been using loudspeakers as valves, air pressure modulators
and even compressors since the early seventies. Since loudspeakers
are moving coil devices by design, the low moving mass is
responsible for their excellent responsiveness. Note that the
loudspeakers are driven with sub audio frequencies (and even pure DC
if used in a valve) in these applications. In any case, one should stay
way below the resonant frequency of the loudspeaker.

You can even take this design a step further by using the speaker as a
vibrating membrane coupled to a resonator, thus coming close to the
diaphane register found in some 19th century pipe organs. It is a good
way to achieve strong-sounding basses in relatively small volumes.
However, one could question here the extent to which one can still
consider such an instrument to be 'acoustic' and not as loudspeaker-
sound driven... In any case, this does not seem to be a either/or
question, since when properly analyzed, a continuum shows up
between purely electronically generated sound and acoustically
generated sound. In version 2 of our automated sousaphone <So> as
well as in the first versions of <Bono> for instance, a moving coil
mechanism is used to make the silicone lips vibrate against the
mouthpiece. This modulates the air flow coming from a small
compressor and causes resonating sound from the connected
instrument. These instruments do sound 'faulty' notes at times and
occasional multiphonics. But, if we drive the instrument directly with
a moving coil compressor driver, as we did in in the first version of
our experimental cornet <Korn>, the sound is determined to a much
larger extent by the electric signal applied to the driver as the acoustic
coupling to the instrument is a whole lot lower than in the first case.
Here 'faulty' notes simply cannot occur. This last concept is therefore
a borderline case as one could consider it to be simply a non-linear
loudspeaker.

2.6.: Acoustic impedance convertors for a pressure-driven
monophonic wind instrument

file:///C:/LogosWebsite/instrum_gwr/korn.html
file:///C:/LogosWebsite/instrum_gwr/bono.html
file:///C:/LogosWebsite/instrum_gwr/so.html

When thinking through the acoustical function of wind instruments, be
they lip-driven or reed-driven, the basic principle is always an air
column with an adjustable resonant frequency coupled to a driver. In
order to obtain proper resonance, the driver should not be too stiff or
frequency- selective. It should be very low impedance since the
resonator will convert high pressure and small amplitude at the
mouthpiece side into low pressure and high amplitude at the point of
contact with the surrounding air. Thus a wind flow does not appear to
be essential for the acoustic functioning of a pressure-driven
instrument. Human players however, can only make their lips vibrate
(this also applies to reeds of course) by directing a windflow and using
the elasticity of either lips or reed. If our muscles were only fast
enough, we could play the instrument without using our lungs. This
analysis led us to the development of sound compression motors
coupled to properly designed acoustic impedance converters as a
replacement for lips and reeds in wind instruments. Note that this does
not apply to air flow-driven instruments such as flutes, which we have
treated above. We come back to them later though. Pressure-driven
instruments acoustically behave as resonators closed at the driven end.
Instruments developed according to this line are:

• Ob
• Korn
• Heli
• Bono (version 3)
• Autosax (version 4)
• Fa
• Klar
• Bug
• So (version 3)
• Flut

If the impedance converter is well designed (the orifice ought to be as
small as is reasonable, although this is done to the detriment of sound
pressure), the waveform of the driving signal, provided it has enough
partials, becomes fairly unimportant and the instrument will produce a
sound pretty close to the sound obtained by players.

 However, attack
and envelope will have to be controlled by the electronic driver using
amplitude modulation. If this is left out, the sound produced will
invariably sound synthetic, particularly on sustained notes. In all our
robots making use of this technology, we have implemented a wide
range of expression controllers for this purpose. Particularly for the
higher pitched instruments, this approach was very fruitful. The
reason why it is so difficult to make a fully mechanical sound source
for these instruments is that the required speed of movement and the
mass to be moved are too high for electromagnetic devices. From this

file:///C:/LogosWebsite/instrum_gwr/flut/flut.html
file:///C:/LogosWebsite/instrum_gwr/so.html
file:///C:/LogosWebsite/instrum_gwr/bug.html
file:///C:/LogosWebsite/instrum_gwr/klar.html
file:///C:/LogosWebsite/instrum_gwr/fa.html
file:///C:/LogosWebsite/instrum_gwr/autosax.html
file:///C:/LogosWebsite/instrum_gwr/bono.html
file:///C:/LogosWebsite/instrum_gwr/heli.html
file:///C:/LogosWebsite/instrum_gwr/korn.html
file:///C:/LogosWebsite/instrum_gwr/ob.html

constatation, it becomes logical to examine the possibilities of
realizing the mechanical sound sources on a sub-miniature scale and
picking up the vibrations with transducers. These signals, after
amplification, can then be used to drive the acoustic impedance
convertors. The resulting sound is a lot more natural than what can be
obtained with synthesized waveforms. However, such an approach
cannot be used if one wants to automate existing instruments. An
alternative way to improve sound results with digital oscillator-driven
impedance convertors consists of using audio feedback from the
instrument and using this signal to modulate the driving signal in the
software. This however, requires very fast processors. If the frequency
range is limited, the acoustic impedance converter can also be
equipped with a mirliton-like resonator in the embouchure part. Good
results require many days, if not weeks, of experimenting with
different materials and geometries.

Compression drivers are produced by different manufacturers either
for use in public address sound reinforcement systems where they are
coupled to exponential horns (megaphones), or as tweeter drivers for
speaker systems. In fact they are like loudspeakers - moving coil
devices - but lack a sound- projecting membrane. The specifications
vary, with powers ranging from 5 W up to 150 W and impedances
such as 4 Ohm, 8 Ohm, 16 Ohm, 800 Ohm etc. If you are designing
automated instruments using acoustic impedance converters as
described above, you should be aware of the fact that the load on the
driver represented by the converter changes the impedance of the
driver considerably. Also, the impedance depends on the driving
frequency. So for example, one of the drivers we have used (a driver
made in china rated 100W at 16 Ohm) has an impedance of 15 Ohm at
1 kHz with no acoustic load. However, when loaded with an
impedance converter with a long capillary, the impedance, measured
at the same frequency of 1 kHz, rises to 32.8 Ohm. At 100Hz
(measured impedance 11.4 Ohm) or at 10 kHz (measured impedance
26.7 Ohm), the loading effect on impedance is substantial. These facts
dictate the need for linearising or equalizing lookups at the generator
firmware level or in the amplifier stages.

it is also important to understand the way compression drivers work: if
they have a membrane with surface Sm and they are loaded with a
horn with an orifice Sh equal to Sm, than then the compression ratio
Sm/Sh is unity. In audio applications, the compression ratios are in the
order of 2 to 4, meaning that the surface of the orifice of the load, Sh
is only half to one quarter of Sm. In the interest of a natural sound, the
compression ratio for automated instruments should be set as high as
practical. The upper limit is where the air compression starts hindering
the movement of the membrane too much. Taking into account these
considerations, our decision to use a tweeter driver in our oboe robot
<Ob>, becomes logical. The compression ratio in this robot is about
1:25. In fact one could also approach this acoustic impedance
convertor as a de Laval nozzle, a device for which the mathematical
theory is very well developped. (cfr. R.Courant and K.O.Friedrichs,
1999).

The electric signal for the compression driver can be obtained in two
different ways: either one can make use of a suitably designed audio-
type amplifier, or one can generate the power signal directly using two

phase- shifted PWM outputs on a dsPIC type microcontroller. In the
last case a custom designed power output transformer (push-pull) may
be required to match the impedance of the compression driver.

The circuit as we used it for our automated oboe <Ob>, as well as for
<Korn> looks like:

The problem we encountered with this circuit is that amplitude control
becomes only possible by changing the duty cycle of the PWM signals
driving the power mosfets. On low amplitudes, artifacts will become
audible as the resolution (limited to 16 bits) of the signal goes down
with the amplitude. This interdepency can be solved, by introducing a
thirth PWM source driving a P-channel power mosfet in the positive
power line driving the compressor motor, as shown in the drawing
below:

Note that the base frequency of the amplitude PWM signal has to be
well above 20kHz for good results, even with the 10mF capacitor
present to filter out the modulation frequency. The problem with this
circuit is that at a PWM base frequency around 100kHz, it is very hard
to find power mosfets that switch fast enough. Also, this circuit is not
very power efficient, as about half of available power gets dissipated
in Rx, a high power resistor. In a preliminary version of our <Fa>
robot Rx was taken as 15 Ohms, matching the impedance of a half
winding of the transformer (16 Ohms). For the P-channel mosfet a
IRF9540NPBF was choosen. Since the practical results were quite
deceptive, we decided to get back to analog regulation, starting from
the same 100kHz pwm signal generated by the dsPIC microcontroller.
In the analog approach we use an LT1038 power regulator and drive
the adjust pin with the variable resistance from a Silonex optor
component, a combined LDR-LED. The complete circuit became:

This circuit works very smoothly although one may find it to react
rather slowly to amplitude change commands. The linear regulator
(LT1038) is nowadays an obsolete part in a TO3 housing, but
alternative parts are available on the market. A LT1083 (Linear
Technology Corporation) should work, though Umax on the input is
limited to 30 V and maximum current is only 7.5A. We didn't check it
at the time of this writing.

The circuit using an audio amplifier, as used for our automated valve
trombone <Bono>, as well as for <Autosax> and <Heli> looks like:

Note that a transformer is used in this circuit as well. But since we
only have to cope with small signal levels here, ordinary good-quality
audio line level transformers readily available on the market can be
used. Note that volume control is achieved here by using a thirth
PWM signal to control an Optor circuit (LDR- LED combination).
Although these components are highly non-linear, they helped us in
avoiding artifacts on low amplitude levels.

For our clarinet robot, <Klar>, we decided to go for a true 32 bit ARM
processor in order to avoid artifacts in the volume control which had
to be implemented with an extremely large dynamic range (110dB) ,
dictated by the properties of clarinets. Thus we had the possibility of
implementing formant filters, vibrato and tremolo on the controller
level. In this case, the power driver is an ordinary high quality audio
amplifier.

In the <Bug> robot, finished january 2017, we used a Microchip
24EP128MC202 16-bit microprocessor to steer the membrane
compressor. This is the circuit:

file:///C:/LogosWebsite/instrum_gwr/bug.html
file:///C:/LogosWebsite/instrum_gwr/klar.html

1. Excite the membrane compressor with a waveform (at least 4
periods are required and these must be looped in the firmware)
corresponding to what you would like the robot to sound like. Lets
call it WavIn(). This waveform must be without any modulation and
recorded in an anechoic chamber using high quality microphones at a
distance not larger than the size of the sound source. This signal can
best be derived from a recording of the instrument played in the
traditional way. So, it should be recorded prior to modifications
required to build the actual robotic instrument. Make sure you record
sound samples for a large series of different notes in different
dynamics and registers as excitation waveform differ greatly in
function of these parameters.

2.- Record the sound of the robot, using a high quality microphone,
with this excitation and convert it to a format suitable for the
microprocessor selected. Lets call this waveform WavOut() . Make
sure the sizes of WavIN() and WavOut() are the same and take care to
allign the phase as well as possible. This is a quite tedious job, in
particular for instruments where the contribution of the instrument to
the sound result is relatively small as compared to that of the playing
style, the mouthpiece etc. For the saxophone this is noticeably the
case, whereas we had less problems in this respect with the oboe and
the flute.

3.- Calculate the required excitation waveform as: WavEx() = (2 *
WavIn()) - WavOut(), in the time domain. Normalize this wave and
remove any DC components. This wave is a model of the excitation
wave deprived from the influence of the instrument. Of course this
cannot be fully true, as it doesn't take into account the mutual coupling
of excitation and instrument. However, the model does work quite
well on practical robots of enough waves are prepared to cover the
dirrents registers and dynamic levels.

4.- Reprogram the microprocessor to use WavEx() as an excitation
waveform for as many notes and dynamics as the microprocessor can
cope with.

This method was applied in the construction of the <Flut> and version
3 of the <So> robot in 2020. Of course, the procedure ought to be
performed for a note in each register the instrument is supposed to
sound. It would be ideal -but tedious- to follow this procedure for each
individual note. However, the microprocessor used should than have a
very large memory. The 16 bit 24EP128MC202 types we prefer to
use, are limited to 16kBytes, enough for a maximum of 10 wavetables,
1024 bytes each.

The theory behind this approach is that the excitation-wave should
correspond as much as possible with the vibration of the lips or reeds
that cause the vibration in the instrument. As it is nearly impossible to
capture this vibration by direct methods, we reason that the sound
produced by the instrument is the sum of the excitation and whatever
the instrument adds (or omits) to it. Thus, by sending a sample of the
normally produced sound to the membrane compressor, we should get
the excitation wave plus twofold the contribution of the instrument.
By calculation of WavEx() = (2 * WavIn()) - WavOut() we get a
model of the exitation wave. When studying and analysing waveforms

file:///C:/LogosWebsite/instrum_gwr/flut/flut.html

impossible on PC's. From an audioperception point of view this is of
course greatly exagerated a requirement for such high frequencies.
Also, one would get in great trouble when trying to generate
waveforms at such a high sampling rate on a microprocessor platform.
Nevertheless, there is clearly a say for the use of as high as possible
sampling rates. The 192 kS/s sampling rate offered on some of the
better sound cards in PC's will lead to good results up to 1500 Hz, or
midi note 90. This is more than enough for any practical application in
automated instruments. As to vertical resolution, the commonly used
16-bits are more than what we really need. So going to 24 bits is
overkill. On the 16-bit microprocessor platforms we have used so far,
it's already hard enough to reach a resolution of 12 bits.

Also, it is important to keep in mind that the fact that there is no
common divider between the sampling rate and the pitch leads to
slight detuning of the generated notes. Tuning can only be guaranteed
to be precise if the sampling rate divided by the frequency of the note
is an integer. As equal temperament leads to frequencies that can only
be expressed as irrational numbers, this problem cannot be
circumvented.

Practical application of this method are documented in the source code
for the firmware of the robots <Flut>, <So>, <Autosax>, <Bug> and
<Hunt>. Utilities to calculate, display and manipulate the required
wave lookup tables are integrated in the DLL libraries of our GMT
software.

3.-Instruments where the sound originates from, or is influenced
by rotation, rotating or linear friction such as in bowed
instruments, sirens, the rotating valves in vibraphones, the
tremulant in reed organs etc.

Technology to be used: Frequency control of AC motors, PWM
control of DC motors, linear motors, servos and/or stepping motors.

Example projects:

• Hurdy
• Flex
• Sire
• Springers
• Tubo

A particularly difficult problem is encountered whenever one attempts
to automate bowed instruments. The pressure of the bow against the
string as well as the bowing speed have to be controlled in great detail.
To control the pushing pressure of the bow against the string, soft-
shift magnets driven with variable DC or PWM can be used. The
picture shows the mechanism used to achieve this in our automated
hurdy gurdy where we use a rotating round belt as a bow.

file:///C:/LogosWebsite/instrum_gwr/tubo.html
file:///C:/LogosWebsite/instrum_gwr/springers.html
file:///C:/LogosWebsite/instrum_gwr/sire.html
file:///C:/LogosWebsite/instrum_gwr/flex.html
file:///C:/LogosWebsite/instrum_gwr/hurdygurdy.html

Note that these soft-shift magnets, although extremely expensive, are
devices that respond relatively slowly. The forces involved here
preclude the use of moving coil mechanisms. Pneumatic cylinders
would be ideal here, if they didn't suffer so much from exhaust
noises...

The rotators in vibraphones can easily be driven with 7.5 degree per
step stepper motors. To avoid noises, it is best to drive the rotating
shaft with a rubber or nylon belt. The same principle can be applied to
the typical Doppler-based vibrato mechanism found on many larger
reed organs. On the original instruments, this rotator - functionally
very similar to the Leslie effect - is driven by a simple pneumatic
motor. The disadvantage is that the vibrato speed becomes
intrinsically dependent on the wind pressure and thus the sound
volume. By replacing the pneumatic motor with a silent DC motor (we
have used tape recorder motors for this with great success) we can
control the vibrato speed independently. We also found that replacing
the blades - normally made from cardboard - with more reflective
material such as polished steel (thin Hasberg measurement blades)
makes the entire mechanism a lot more effective.

The picture shows the tremulant mechanism as we made it for our

<harmO> robot.

In our <Tubo> robot, we used DC motors with an excentric wheel to
move the pipe resonators over a small trajectory over and back from
the center of the aluminum sounding tubes.

4.- Instruments where the sound originates from shaking.

Maracas, Angklungs, bells, shakers, thundersheets etc.

Bipolar electromagnets or solenoids can be used, with single pulse-
time control in both directions. Useful solenoids can be found in the
catalogues of Kuhnke, Emessem as well as August Laukhuff, where
they are presented as register traction magnets. Shaking frequency is
limited to the low frequency ranges, up to about 30 Hz. For medium
shaking frequencies, motor- driven vibrators can be used.

4.a: Bipolar electromagnets

Example projects:

• Klung (automated angklung)
• Springers (maracas)
• Psch (steel sheets)
• Thunderwood (thundersheet, bamboo chimes)
• Whisper (tiny maracas)
• Tinti (tintinabuli)
• Chi (orchestral chimes)

For small objects (bells and rattles) bistable electromagnets as used for
registration knobs in organs can be used:

 The type shown uses two separate
coils. By steering them with two independent PWM signals, you can
get intermediate positions easily. For good control, a position sensor
and a PID regulating system is required. These double solenoids are
-by the way- also very suitable for the implementation of plucking
mechanisms on strings if you can live with the very low force they
deliver. For larger loads and forces, the solenoid shown in the picture
below is suitable. Note that solenoids with higher forces - and thus
more moving iron mass - also inherently have a much slower
response. We used this type in <Klung>, our automated angklung.

file:///C:/LogosWebsite/instrum_gwr/chi.html
file:///C:/LogosWebsite/instrum_gwr/tinti.html
file:///C:/LogosWebsite/instrum_gwr/whisper.html
file:///C:/LogosWebsite/instrum_gwr/thunderwood.html
file:///C:/LogosWebsite/instrum_gwr/psch.html
file:///C:/LogosWebsite/instrum_gwr/springers.html
file:///C:/LogosWebsite/instrum_gwr/klung.html
file:///C:/LogosWebsite/instrum_gwr/harmo.html

 A
type made by Emessem in the UK (since 2007 named Magnet-Schultz
Ltd.) looks like this:

If the shaking frequency needs to be very high or very randomized,
once again cheap loudspeakers can be used, as we did in the rain-
mechanism in our <Thunderwood> robot. When solenoids are used,
they should have two different windings. The choice of commercially
available bi-directional solenoids is extremely small. For some
applications it is possible to combine two solenoids to implement bi-
directional movement without using return springs. This is what we
ended up with in the design for the rotary valve mechanism in our
automated trombone: <Bono>. It is not too difficult to make bi-
directional solenoids yourself provided you have a lathe and some
winding experience.

4.b: Motor-driven vibrators.

These devices have applications in a wide range of industrial
processes: sieving, mixing and separation of granular components...
They consist of a motor (generally a 1 or 3-phase AC induction motor)
with a protruding axis on both ends onto which eccentric weights are
mounted. By adjusting the position of the weights, the amplitude of
the vibrations can be regulated. In applications for musical automata
where fast shaking is a requirement, good control of rotational speed
as well as amplitude becomes a requirement. For AC motors, standard

file:///C:/LogosWebsite/instrum_gwr/bono.html
file:///C:/LogosWebsite/instrum_gwr/thunderwood.html

3-phase motor controllers can be used. If control of acceleration and
amplitude is required, the same technology can be applied but one
should preferably opt for hybrid stepping motors. Steering the
magnitude of the motor current will yield a good control over
vibrational amplitude whereas programming of the stepping patterns
allows control over the vibrational wave form. In our experiments,
shaking frequencies up to 400 Hz have proven to be possible. An
intrinsic problem is presented by the vibrator's own resonances in
combination with the load. Under resonance conditions, self-
destruction is easily achieved.

Commercially available AC motor vibrators are available from
Italvibras (Italy). Type Vibtec M3/4-S02 is a monophase device with a
centrifugal force rating of 2 to 6 kg, powerful enough to vibrate even
the largest thundersheets. Models with much higher forces are
available from the same source.

The model shown on the picture weighs 850 g and has a power rating
of 20 W. It is very quiet in operation. For variable frequency use, we
advise using them with an amplified sine wave. Make sure the voltage
is reduced when the frequency goes down. If a 3-phase motor has to
be steered, following circuit gives good performance over a wide
frequency range, in fact only limited by the possibilities of the motor::

The waveshape delivered to the load is a square wave. The phase
relations between the outputs, as well as the frequency of operation
are programmed in the PIC-firmware. Source code is available on
request. For high voltage motors, IGBT's should be used rather then
power mosfets.

A simpler monophase motor vibrator was used in our <Chi> robot,
automated orchestral chimes. Intensity control of this vibrator was
implemented with very slow PWM in the PIC microcontroller steering
an optical AC relay.

5.- Instruments usually bowed or struck, with ferromagnetic
strings or blades.

On such instruments, electromagnetic devices can be used to control
the excitation of the strings or steel blades very precisely. Precise
tuning of the strings or objects is mandatory for good resonant
operation. Moreover, the driving circuitry should have extremely
stable as well as precise frequency synthesizing. For this purpose we
now use Microchip 30F3010 microcontrollers. (ds-PICs). Although it
is perfectly possible to design instruments in this category to be self-
tuning, (automated guitar tuning devices are a commercially available
example), we have implementing such a feature in a design only once,

file:///C:/LogosWebsite/instrum_gwr/chi.html

mainly because the weight of the motors involved quickly becomes
prohibitive.

Example projects:

• Hurdy (e-drive mechanism)
• Aeio (two phase e-drive mechanism)
• Synchochord (auto-tuning mechanism)
• Flex (singing saws)

The inherent problems you encounter here have to do with the low
coupling factor between coil and object. The higher you want the
excitation amplitude to be, the lower the coupling factor becomes
because you will have to increase the distance between string or object
and the electromagnet. The electromagnetic force is inversely
proportional to the square of the distance... As yet we do not have an
adequate solution for this problem and thus all the designs making use
of this technology suffer from very low efficiency, i.e. very high
current consumption versus sound output.

In the 12-stringed <Aeio> robot we used an electromagnetic string
driver operating in two phases. Electromagnets are mounted on both
sides of the string and by controlling the duty cycle of the driving
signals, string motion can be controlled to a quite large extent. The
result comes pretty close to a bowed string sound.

file:///C:/LogosWebsite/instrum_gwr/flex.html
file:///C:/LogosWebsite/instrum_gwr/synchrochord.html
file:///C:/LogosWebsite/instrum_gwr/aeio.html
file:///C:/LogosWebsite/instrum_gwr/hurdygurdy.html

The string driver assembly as used in the <Aeio> robot (opened up)
looks like:

When mounted, the electromagnets face each other:

Note that the mechanical assembly should be made of a non-
ferromagnetic material. We use stainless steel (AISI304). It will be
clear that the excitation force can be controlled by changing the
amplitude of the excitation pulses. It is quite tempting to implement
this by PWM-ing the pulses at the microcode sound generation level
However, there are some caveats here, in that easily audible artifacts
are produced, caused by the too-low carrier frequency of the PWM
signal. A cleaner approach would be using voltage- controlled current
sources (using LM317 variable voltage regulators for instance) for
each of the coils. However, apart from the far greater complexity of
the circuitry, keep in mind that the dissipation tends to be quite high.

In the string excitation diagram above, we have shown an almost
sinusoidal movement. Such movement in practice will only be
encountered when the excitation force from the magnets is very low as
compared to the stiffness of the string. When we take the spring-
behaviour of the string into account, the movement shape of the string
under excitation will look more like:

Notice that the zero-cross already happens in the B phase! Also note
that the curvature in the A phase depends on the distance between
string and magnets, on the excitation force as well the elasticity of the
string. In any case, the wave shape thus obtained will come closer to
that of a real bowed string, for which a sawtooth shape is generally
assumed.
The circuit for driving a single string of our <Aeio> robot looks like:

In this case the microcontroller also steers the string damper and an
extra string exciter solenoid.

Experiments are being conducted in using 3 separate coils driven in 3
phases, so that the rotation of the string can be controlled better and
the coupling factor should become a lot higher. Furthermore, the
string driver can be made movable along the length of the string. We
will report on the results of these experiments in due time.

For the <Synchrochord> robot, although by design its string is
plucked by a synchronous motor mechanism, we were in need of an e-
bow like mechanism for the autotuning feature as we needed a
resonant feedback on the string for tuning. For the string excitation we
used a dismantled torque-motor. These motors are induction type AC
motors with a squirrel-cage rotor. If they are made to work on single
phase current, they have a shaded pole realised by a single turn copper
winding in the stator. Without this they wouldn't start up. The shaded
pole creates a delayed magnetic field. Types with two windings
whereby one of them is phase shifted using a capacitor also exist.
When the rotor is removed, the hole left makes a very suitable
magnetic field for ferromagnetic string excitation if the string is

passed through the hole.

 Note however that
the exact center is a point of zero-force. Thus the string has to be lead
through the hole a bit off center. Driving the windings of such a motor
entails the design of a high voltage variable frequency power supply,
not such a trivial undertaking. This is because such motors are only
produced for operation on the regular power line. Details can be found
in our description of the <Synchrochord> robot.

Obviously the problem with the low efficiency of e-drives is not
encountered when we deal with electronically amplified instruments
such as electric guitars. But in this article we have very deliberately
left out the possibilities of using electronic amplification. Here we
intend to deal exclusively with pure acoustic sound and how to obtain
it under close control.

Another use of electromagnetic drives can be found in the control of
reeds in single-reed instruments (saxophones, clarinets, bagpipes).
Here we do not bring the blade or reed into resonance but, on the
contrary, impose our vibrational mode onto the reed. In order for this
to work, the free resonant frequency of the reed must be a lot higher
than the highest pitch you want to generate. This dictates the use of
pretty thick spring metal reeds and as a consequence, pretty high
magnetizing forces. Dual coil systems operating in two phases have
proven to be the most workable and reliable. The sound color can be
greatly influenced and controlled by controlling the phase angle
between the currents in both coils.

Example projects:

• Autosax (version 3)
• Ob

Our attempts to realize oboe and bassoon reeds this way have not been
very successful to date, but research is continuing. We can only hope
flexible piezoelectric material (yes, we know of Kynar, but this
material does not work here...) becomes available one day. Acoustic
impedance converters (as mentioned before) have given by far the best
results so far when it comes to reed-driven instruments.

file:///C:/LogosWebsite/instrum_gwr/ob.html
file:///C:/LogosWebsite/instrum_gwr/autosax.html
file:///C:/LogosWebsite/instrum_gwr/synchrochord.html

A note on the phenomenon of frequency doubling and spectrum
shift:

When a coil moves in the magnetic field of a permanent magnet, the
coil will follow the AC input signal and thus the movement of the coil
will be at the input frequency of the signal. This happens in normal
loudspeakers. Likewise, if a coil is wound around a non-moving
permanent magnet, the force exerted on a ferromagnetic object in the
neighborhood (string, membrane, reed, tongue...) will strictly follow
the frequency and wave shape of the driving signal. This happens in
the old-style telephone receivers and early headphones used for Morse
telegraphy. These devices typically use a U-shaped permanent magnet
with two coils connected in series, one over each leg. In front of the
poles of the magnet a thin, round iron membrane is placed so that it
does not make contact with the poles. However, if a non-permanent
core is used for the coil (or if the core loses its magnetization...), the
frequency of the force will be twice the frequency of the input signal
if the ferromagnetic object on which the force is exerted it not
permanently magnetized itself. Therefore a string driver like the one
used in <Hurdy> must be operated electrically at half the frequency
required, since the mechanism itself will operate as a frequency
doubler. The same applies to membranes and reeds driven by weak
iron-core solenoids.

This explains why most AC-driven buzzers designed for the mains
voltage and frequency 50 Hz or 60 Hz, sound at 100 Hz or 120 Hz.
Coils with permanent magnetic cores are very often used as pickup
elements, for example in electric guitars, phonograph turntable
cartridges and some types of contact microphones. If used as force
output transducers, one has to realize that the AC voltage applied to
the windings will fully demagnetize the core after a sufficient time has
passed. Another perspective with relevance for sound producing
devices is that you can drive a weak iron-core solenoid with a signal

superimposed on a variable DC voltage. In many cases this gives you
control over the spectral content of the vibrations thus produced. This
is clarified in the drawing below:

It will be clear that the spectral content, both in the case of frequency
doubling and in the DC-offset case described here, will contain a very
large amount of very high components. If this technique is applied, it
is important to realize that the spectrum will become dependent on
amplitude as well. We have applied it to good effect in our robots
<So>, <Bono>, <Korn> and <Autosax>.

Often one will be compelled to drive the coils with square waves.
Most of the time they will make use of PWM, but that aspect is not
immediately relevant in this context. There is a pitfall in this case,
which is shown in the upper drawing below:

If a bipolar square wave is used to drive a coil, the force exerted by
the electromagnet thus formed will tend to be continuous! (Of course,
due to the time required to build up a NS magnetic field followed by
the build-up of an inversely polarized SN magnetic field, there will be
a ripple in the force curve proportional to RL as well as to core
material constants). This way it will be impossible to excite an object

with a given frequency (apart from harmonics that will be produced as
a consequence of finite magnetization time - the magnetic poles have
to invert at the frequency of the signal, causing slow slopes on the
force square wave and thus many spectral components and artifacts
enter into the game). The square wave bipolar AC drive will lead to a
nearly constant force with ripple on the object. This will cause high
dissipation in the core material, leading to a very strong heating up of
the assembly. However, if the core is a permanent magnet, this force
will follow the frequency. In that case it will fluctuate up and down
around the constant force of the permanent magnetic field. With a
unipolar square wave drive, the force will follow the frequency of the
driving voltage. If in that case (lower drawing) a permanent magnet is
used as the core material, the force will either vary between the
constant force of the magnet and the extra force added by the drive (if
the polarity of the driving voltage corresponds the the polarity of the
magnet), or else between the constant force of the magnet and the
opposing and smaller force caused by the inverse polarization of the
driving voltage. It follows that if permanent magnets are used as core
material, correct poling of the excitation voltage becomes very
important. In fact, in mechanical terms electromagnets behave a bit
like diodes or rectifiers in pure electronics. A word or warning though:
if you use PWM with a high frequency with substantial power on
permanent magnet cores, demagnetization is likely to happen at a
pretty fast rate. For those amongst you that remember that technology:
it's like erasing heads on analog tape recorders... So if you really need
it, it might be better to go for regular solenoids driven with a
(variable) DC offset current. It can be done either by using coils with
separate windings or else as shown below.

A note on solenoids and electromagnets and their freewheeling
diodes:

Invariably one will see circuits where over each inductive load, a
diode is placed. This diode shorts the back-EMF generated by the
inductance when it goes from the on to the off state. The voltage spike
produced can reach values up to about tenfold the operating voltage of
the inductor. At switch off, the diode causes this voltage to drop with
a current flowing through the inductor, thus extending its activation
time. In practical terms: it slows down the action of the solenoid or

inductor. So if you want the fastest possible response from an
inductive device, it would be better to avoid freewheel diodes
alltogether. It is in fact possible to go without them, on the condition
that the driving MOSFET or IGBT is capable of withstanding 10
times the voltage used to switch the load. Also, it must have an
internal protection diode.

The back EMF generated by an electromagnet when it is switched off,
largely depends on the force it excerts on the magnetisable structure it
is coupled to. If this structure can vibrate and has mechanical
resonances -as in the case of all our robots using excited vibration- the
back EMF becomes highly variable as well as unpredictable. As a
result, calculating good values for the snubber network, tends to
become nearly impossible. The best practice is to start from a
calculated guess and than perform temperature measurements on the
components involved under varying operational conditions.

6.- Plucked string instruments

Here there are different possible approaches. The mechanism found in
harpsichords does not lend itself very well to expression control and
hence should by bypassed in the context of this survey. To implement
a plectrum with precise control of the striking force (speed), a
stepping motor driving a rotating plectrum may be used. If the
plucking has to be repetitive (such as in mandolins), a small DC motor
can be used as well. For dynamic control it then should be mounted on
a motor- or soft-shift solenoid driven slide. Rotary solenoids can also
be considered here. A type produced by Magnet-Schultz Ltd. is shown
on the picture. Return springs can be added if required.

Although, as said earlier, in harpsichords and suchlike, attack control
is extremely limited, in some cases it is possible to realize some range
here, by modifying the instrument. If the jacks are found to be placed
strictly in-line and if they all pluck to the same side of the string, the
entire jack-assembly can be made to move over a traject of less than a

milimeter, enough for some volume control. In our spinet robot.
<Spiro> we were unable to realize this because the jacks were on
alternating rows and plucked the string on alternating sides.
Nevertheless we implemented velocity sensitity in this robot. A
special feature of <Spiro> is that we added a muffler mechanism. It's
simply a stroke of thick and soft felt glued to a piece of wood that can
be pushed against strings under the action of two soft-shift solenoids.
This gradual control over the muffler (or luth register, as it is often
called in music literature), since we use two independent solenoids,
allow for all gradations between low/high side and open or muffled
and even overstressed, such that a sort of vibrato even became
possible.

7.- Fretted instruments

If microtonality is to be implemented, linear motors are about the only
reliable way to go. The linear motor moves the fret and a solenoid is
used to push the string against the fret. Pulley mechanisms using
stepping motors and gears lead to a lot of extra noises, comparable to
those produced by now obsolete dot-matrix line printers. Also stepper
motor solutions tend to behave very slowly and are inherently
unprecise. But when the instrument has fixed frets, push type
solenoids ought to be the first candidates. Since the force they exert on
the string is a function of applied voltage, it is pretty straightforward
to implement finger vibrato. This is what we implemented in our
<Synchrochord> robot. The required force to push the string down on
the fret in an acoustical instrument tends to be pretty large, dictating
rather large solenoids. Due to their physical size, it is very difficult to
implement them on smaller fretted instruments such as mandolins or
ukulele's.

8.- Movement and gesture

Movement does not seem like an essential feature for expression
control in musical robotics. However, we noted that exactly the fact
that many components do visibly move, seems to be a major seductive
element for audiences. This is not so strange, as musicians when they
play do move as well. There are two distinguishable aspects to this:
first there are those movements strictly related to the sound
production. Beaters hitting, keys pressed down, rotating valves, the
complex gestural patterns of bows on string instruments... These are
most of the time easily implemented in acoustic robots but some effort
at times is required from the designer to also make them clearly
visible to audiences. On organs for instance, all valve movement takes
place inside the windchest, normally invisible. In the <Bomi> robot,
we solved this by designing a transparant windchest.

The second aspect is related to the gestures musicians do make and

file:///C:/LogosWebsite/instrum_gwr/Bomi.html
file:///C:/LogosWebsite/instrum_gwr/synchrochord.html
file:///C:/LogosWebsite/instrum_gwr/spiro.html

that are not at all required for the sound production properly speaking.
One might think of them as mere theatric, but it must be said that they
contribute quite a bit to conveying musical meaning in performances.
They allow listeners, through some form of embodiment, to follow
musical phrasing as well as to anticipate on the course of the musical
discourse. (cfr. Craenen, 2011). For such reasons, we have
implemented some form of gesture in those musical robots where this
seemed appropriate. Examples can be found in a few of our
monophonic wind instruments:

• <Ob>
• <Korn>
• <Fa>
• <Klar>
• <Horny>
• <Asa>
• <Bug>

Making the robot move, nevertheless poses often very specific
problems. First of all, it is mandatory that the movement does not
cause any extraneous noises. This excludes often the use of fast
rotating stepping motors. The forces involved can be quite impressive.
For the up and down movements in our oboe robot, <Ob>, we used a
geared DC motor with a bipolar drive and a tilt sensor. The motor
drives a chain to make the entire oboe assembly move. <Korn>, the
robotic cornet, uses horizontal as well as vertical movement and here
steppers were applied, however at the detriment of speed. The <Fa>
robot, a bassoon, moves on a pivoting point on the base, driven by a
DC motor and a large dented wheel segment. Here is a circuit as used
for the <Fa> movement:

file:///C:/LogosWebsite/instrum_gwr/bug.html
file:///C:/LogosWebsite/instrum_gwr/asa.html
file:///C:/LogosWebsite/instrum_gwr/horny.html
file:///C:/LogosWebsite/instrum_gwr/klar.html
file:///C:/LogosWebsite/instrum_gwr/fa.html
file:///C:/LogosWebsite/instrum_gwr/korn.html
file:///C:/LogosWebsite/instrum_gwr/ob.html

components of the bells down to the audible range. By modulating the
ultrasonic carrier frequency, we can make the tintinabuli produce
sliding pitches. Obviously, here we need a loudspeaker. Details on
concept and realisation are available on our page on the <Tinti> robot.

This concept was driven even a step further in the realisation of our
automated orchestral chimes: the <Chi> robot.

Overcoming the MIDI constraints and bottlenecks

1. The 7-bit constraint

As I have mentioned in the treatment above, for most implementations
of expression control, we use precise time-controlled pulses. The
minimum resolution of the timers to be used is 16 bits. Now, standard
midi is basically a 7-bit protocol. Thus it is impossible to offer the
finest possible resolution to the user using midi. We have to remap the
relevant section of the useful range into the 7-bit range offered by
Midi.

The procedure for doing so starts with determining the minimum pulse
width at which the valve starts opening. (tmin). For percussive
instruments, you should of course take the minimum value required
for the hammer to just strike the object. Next determine the shortest
pulse width at which the valve fully opens and at which a further
increase of pulse duration no longer makes a perceivable difference.
(tmax) Note that generally these limit values will be different from
device to device, and from note to note. They may also shift a bit over
time due to wear of the mechanical parts. The useful timing range is
now tmax-tmin. Now it would seem easy enough to just remap this range
onto the 1-127 range covered by midi. Generally speaking this hardly
ever leads to good results. Neither the solenoids nor our ears have
linear characteristics. The mapping should be described using at least
a second degree equation. To find out what curve best suits a smooth
mapping of the range, we use simple curve-fitting software (Gaussfit).
To get good results, one should determine some 5 intermediate points,
starting with the middle of the range.

The equation found should then be implemented into the firmware of
the microcontroller and here obviously one will be obliged to use
lookup tables. Firstly because most microprocessors are integer math-
based and secondly because modern microprocessors have more than
enough memory available to store the lookups.

For ease of maintenance, we invariably implement sysex commands
into our robots, allowing the experienced user to upload different
lookup tables. Midi program change commands are implemented to
choose between these.

2. The midi bottleneck

Midi as a protocol should now be considered outdated. This is mostly

file:///C:/LogosWebsite/instrum_gwr/chi.html
file:///C:/LogosWebsite/instrum_gwr/tinti.html

because it is way too slow to control large instrumental setups when
many expression controllers have to be sent. As an alternative,
preserving some compatibility, UDP/IP can be used. This topic is
treated in another short article. However, MIDI is still the lingua
franca for musical instrument control and therefore we have put
considerable effort into using it up to its extreme limits. In our robot
orchestra we have about 62 machines so far, each listening to one or
two midi-channels. It will be clear that this dictates the use of a
multiport midi device, our favorite (although far from perfect) being
the Midiman 8x8. However, even though this gives us 128 midi
channels, it means that each machine has to handle all the interrupts
generated by the midiflow for many other machines. This invariably
leads to glitches, lost bytes and timing problems. To overcome these it
is a smart idea to build dedicated midi filters outputting only the midi
data relevant for a specific machine. Here is a possible approach,
using a fast dsPIC 30F3010:

The dip-switch is used to select the midi channel to be selected for
pass-through. The jumper (JP1) allows you to pass the first adjacent
channel as well. This was done with our quartertone automata in
mind, since these use two midi channels.

A frequently occuring problem with MIDI is related to its
implementation of the so called Midi-Thru ports. The ports output the

file:///C:/LogosWebsite/g_texts/Midi_Soup.html

incoming midi signal after passing through an optocoupler. If the
signal passes through more than two of these optocouplers, signal
deterioration does occur, leading to stuck notes and missing
commands. A proven to be good solution to this problem is
implementing midi data as RS485, so true differential. A tested and
worked out proposal is descibed in Midi-Soup, treating midi problems
more in depth.

Feedback and sensing

If the hardware is well designed, precise and reliable, it is generally
better to do without any kind of force, position, pressure etc. sensing
devices. Automated regulation of any parameter always comes with a
price tag, not only financially, but more importantly, it is detrimental
to timing precision as well as reliability. One of the most common
mistakes amongst automaton builders and robot designers in the area
of musical instruments is in trying to overcome deficient or poorly-
built hardware by adding sensors and regulating loops in software.
You invariably end up with a shaky and unreliable construction,
plagued by under and overshoot. However, there are many cases in
good automated instrument design where you have almost no choice.
We will give a few examples, before we delve a little further into the
technologies and components available.

1.- Automated rototom-playing robot: <Rotomoton>

Here we used large stepping motors to rotate the central spindle of the
drums in order to tune them. As we built the robot, it turned out that
the useable trajectory shifted quite a bit with the time of use. What is
more, the trajectory turned out to be highly sensitive to temperature,
this of course being due to the properties of the Mylar membranes on
the drums. For these reasons we provided each motor-driven drum
with sensors so that the beginning and end positions could be set. The
microcontroller automatically adjusts the number of steps according to
the signals from the sensors. First we used microswitches, but these
had too much hysteresis and so we replaced them later with non-
contact proximity induction sensors by Pepperl+Fuchs.

2.- Automated bass accordion : <Bako>

For this robot, the bellows are driven by a trapezoidal thread powered
by a strong DC motor. In this case we needed to provide end-sensors
but also a PID-regulating loop for the pressure. The rotational speed of
the motor has to adapt to the air consumption, this being dependent on
both the number of notes played and their pitch. In this case we used a
bipolar Freescale low-pressure sensing device to measure the current
air under- or overpressure inside the bellows. We could have done
without the sensors and regulating loop in this case, but that would
entail really huge lookup tables for all the different combinations of
notes versus dynamic level. Memory constraints as well as the
enormous amount of work required to fill the correct values into the
lookup nudged us into the direction of a PID-regulating loop.

3.- Quartertone organ : <Qt>

file:///C:/LogosWebsite/instrum_gwr/qt.html
file:///C:/LogosWebsite/instrum_gwr/bako.html
file:///C:/LogosWebsite/instrum_gwr/rotomoton.html
file:///C:/LogosWebsite/g_texts/Midi_Soup.html

In this case, we mounted two flap valves in the two windchest
channels to modulate the air flow. The valves are driven by stepper
motors. The problem was that we could not guarantee that when the
motor stopped, the valve position would be known exactly. Therfore
we mounted Melexis sensors onto the valve axis, such that the current
position of the valves could be read by the microprocessor at any time.
This made it possible to use the valves as reliable expression controls
on the organ.

4.- Robotic cornet: <Korn>

This musical robot was designed to have movement along two axes,
horizontal and vertical. A very strong stepping motor with a dented
belt was used for horizontal movement. Horizontal movement is
limited to 180 degrees. At first we had microswitches to sense the
extremities. These were very troublesome, because the heavy mass of
the instrument caused a lot of inertia leading to widely shifting end
position determination as well as serious problems in debouncing the
switches. Replacement of the microswitches by inductive proximity
sensors did not cure all our problems. The problems with bouncing led
us to use these proximity sensors as pure analog devices. Since most
PIC microcontrollers have plenty of pins available that can be
configured as 8 or 10-bit analogue inputs, there is no penalty in
increased hardware complexity. 8-bit resolutions are more than
enough if it comes to end-point approach detection. Using analogue
readouts from these sensors, it became possible to control the motor
such that it decelerates smoothly as the sensor is approached. The
Pepperl+Fuchs NAMUR sensors work nicely on 5V power and start
changing their analogue output at distances of approx. 6 mm, even
though they are rated for a 2 mm trajectory only. With these sensors
fully implemented into the firmware, we got <Korn> to move quickly
and smoothly.

5.- Robotic oboe: <Ob>

This robot was mounted in a cradle so that it could move in a vertical
plane over an angle of about 100 degrees. The movement is driven by
a geared DC motor controlled by a bipolar power driver. A chain
connects the motor with the rotating axle around which the oboe is
allowed to pivot. Steering the motor reliably has proved to be highly
complicated because the required motor force depends on the tilt
position of the instrument as well as on the direction of the movement.
Here we solved the problems by using an analogue tilt sensor by
Penny+Giles (type STT280/60/P2), mounted on the instrument and
read by the PIC microcontroller.

6.- Robotic clarinet: <Klar>

Here again, a cradle was used to suspend the instrument such that it
can swing in a pendulum like fashion. A stepping motor and a Penny
& Giles tilt sensor are used for positioning the instrument. The
movement angle is limited by the holding torque of the motor.

As can be seen from the examples, the PID-regulating loop with
sensors was always added because of inherent problems with the
electromechanical devices (slip on stepper motors, temperature

file:///C:/LogosWebsite/instrum_gwr/klar.html
file:///C:/LogosWebsite/instrum_gwr/ob.html
file:///C:/LogosWebsite/instrum_gwr/korn.html

changes) or limitations of the microcontrollers. This is not to say that
we would tend to reject autoregulation, but only that this technology
should not be called upon until all other possibilities have been
exhausted.

The latest design of our piano Vorsetzer is a good example of a
candidate for autoregulation. The existing model, baptized <pp2>
works to a high degree of perfection, but... it needs specific lookup
tables for each grand piano on which you want to use it. Pianos do
show great variation in dynamic range, in touch-mapping on loudness
as well as in key stiffness and repetition speed. To automate the
generation of lookup tables, we started a project allowing the
vorsetzer-piano to become self-regulating. As sensors we use a normal
acoustic microphone, to measure the sound output versus key-force
input combined with a measurement of the counter-inductive voltage
generated over the solenoids when activated. Our experiments have
shown that this induction spike (normally always damped with a
diode) depends to a certain extent on the mechanical resistance the
anchor meets when pushing a key down. Thus it is related to the
'touch' of the piano. In this project, automation is used prior to the
actual concert, exactly as is the case with a human professional
pianist, who will also insist on trying out a piano prior to a public
concert.

Under no circumstances would we use this technology to control the
piano in the course of a performance, because the time required for the
regulating loops to adjust well enough in real time would make the
Vorsetzer sound very sluggish rather than responsive.

[To be completed...]

Power supplies

At first sight it may not be the appropriate place in this text to talk
about power supplies. And indeed, there would be no need to even
talk about them if it weren't that these 'trivial' components found in
just about any electronic design, didn't cause us lots of trouble. If you
are in need for a computer power supply, no problem: the market
offers plenty of choices in switch mode power supplies, ranging from
very low 1W power up to 1kW and more. These ready-made building
blocks actually perform pretty well under the conditions they are
designed for. However, if you want to use then as power source for
fast switching solenoids or motors you are guaranteed to land in the
space of trouble. If you take an SMPS rated for 20 A at 24 V and you
use it to switch a (clamped) inductive load of 10A at a rate of say
10Hz, you are asking for trouble and guaranteed to meet it. The power
supply will start oscillating or simply give up, if you do not get smoke
stacks coming out and see them go to electronics heaven. Analog or
linear power supplies re-enter the world here, but confront us with
many problems as well. Off the shelve linear power supplies capable
of delivering current of 20 A and higher are almost unfindable on the
market. For low currents, up to 3 A, low drop linear regulator chips
come in very handy although the range of possible output voltages
forms a limitation, standard voltages being limited to 3.3 V, 5V, 12 V,
24 V mostly.

file:///C:/LogosWebsite/instrum_gwr/playerpiano.html

The first question to ask whenever we are in need of a hefty power
supply for use in robotic instruments is whether or not voltage
stability is important. For driving stepping motors for instance, this is
in general not important as they are basically current driven. Often an
80 V / 6 A power supply will be mandatory, but in this case we can go
with the simplest of all possible designs: a transformer, a bridge
rectifier and a very large electrolytic capacitor (at least 2200uF per
ampere of current). This recipe in general also applies to those robots
where pulse currents of variable durations are to be delivered to
solenoids. If the buffer capacitors are large enough, there will be no
observable imprecission in the attack velocities.

For hold-voltages (such as in player piano's, in damper mechanisms
etc.) we found that stabilisation of the supply voltage is a requirement.
In such case and as long as the required voltage is below 27 V, we can
use the TL108x series regulators switched in parallel. For each 5 A,
we need to add a regulator in parallel. The circuit requires bulky
heatsinks such that it will end up being about twice as large and eigth
times as heavy, as a comparable SPMS supply.

Examples:

1. Power supply for the dampers in the clamped rod robot <Rodo> (25
A/ 12 V)

Sometimes a high voltage DC power supply is required. The range of
available of the shelve transformers is limited nowadays. So a TRIAC
controlled power supply with a microprocessor for voltage regulation
may be considered. Circuits we developed can be found on the
webpage for our <Per> robot. If one takes special caution to safety,
designs not using a transformer at all are very well possible.

Software and firmware for automated musical
instruments

From the late eighties until about 1995 we controlled each of our
robots with a different laptop computer. In that period all PCs had a
printer port conforming to the Centronics protocol and we used this to
control all the hardware in each robot. For automata requiring very
precise timing control, such as velocity control on percussion-type
instruments, or fast PWM as required for motor control, we used this
parallel bus to program a cascade of dedicated programmable timer
chips (Intel 82C54 type). This easily allowed us to obtain a timing
resolution of 1 microsecond and even 100ns if running of a 10MHz
clock. Although we used microcontrollers in many projects, in those
days they were simply not fast enough to handle and parse the
incoming MIDI data streams reliably.

Even today, this solution in which programmable hardware timers are
used to generate each timed pulse and also for periodic signals cannot
be surpassed by simple microcontroller solutions. The reason is that
the indispendable interrupt mechanism required to handle the
incoming data stream (MIDI commands) causes a timing jitter of at
least about 60 clock cycles of the processor. If the data stream flows in

file:///C:/LogosWebsite/instrum_gwr/per.html
file:///C:/LogosWebsite/instrum_gwr/rodo.html

at a neck-and-neck pace (that is every 0.32 ms) we end up with
1875000 'lost' clock cycles a second. For a modern 8-bit
microcontroller clocked at 40 MHz, that is about 5% of its capacity.
Taking into account the time required to handle the data parsing, we
quickly use up about half of the total available clock cycles. As a
result, the best possible timing resolution for pulses will be in the
order of 20 µs, or 20 to 200 times worse than what can be achieved
with hardware timers. However, the hardware timer solution requires
a lot of board space and also has problems because some kind of data
bus has to be implemented. When many timers are involved, the
physical size of the databus limits its maximum speed.

Nevertheless, since the picture of solutions using microcontrollers has
changed since the beginning of the 21st century, almost all our new
automata now make extensive use of many Microchip PIC
microcontrollers, despite the timing precision constraints. Our favorite
types are the 18F2520, 18F2525 (28 pins), 18F4620 (40 pins), dsPIC
30F3010 (28 pins) and the 24EP128MC202 (28 pins). Using the
MPLAB software provided for free by Microchip, the chips can be
programmed in assembly language or in C. Using the Proton+
compiler under MPLAB it is also possible to write the firmware in
Basic. (A free version of this excellent compiler is available under the
name Amicus Compiler, but it is limited to the 18D25K20 PIC chip).
The Proton Compiler is, in our opinion, the best on the market for
now. It supports most MicroChip processors.

The first thing to be done is to write a MIDI parser based on an
interrupt driven UART. A circular buffer must be implemented in this
interrupt handler, since the UART hardware buffer in the chips is only
2 bytes large. It is -with the processors considered here- impossible to
handle MIDI input streams on a polling base without missing bytes.

Here is the code for the interrupt handler as used on the 18Fxx chips:

High_Int_Sub_Start
High_Prior_Interrupt:

 If PIR1bits_RCIF = 1 Then
' Was it a USART1 byte Receive that triggered the
interrupt ?
 Movlw 6
' Yes. So Mask out unwanted bits
 Andwf RCSTA,w
' Check for errors
 Bnz _Uart_Error
' Was either error status bit set?
 USART_FSR1_Save = USART_FSR1
' Save FSR1L\H registers
 Inc USART_IndexIn
' Move up the buffer
 If USART_IndexIn >= USART_BufferSize Then
' End of buffer reached ?
 Clear USART_IndexIn
' Yes. So clear _USART_IndexIn
 EndIf
 USART_FSR1 = VarPtr USART_RingBuffer
' Point FSR1L\H to _USART_RingBuffer
 USART_FSR1 = USART_FSR1 + USART_IndexIn
' Add the buffer position to FSR1L\H

 INDF1 = RCREG
' Place the received character into the buffer
 USART_FSR1 = USART_FSR1_Save
' Restore FSR1L\H registers
 Retfie
_Uart_Error:
 Clear RCSTAbits_CREN
' Clear receiver status
 Set RCSTAbits_CREN
 Retfie
 Endif
_Timer0_IRQ:
 If INTCONbits_T0IF =1 Then
 Clear INTCONbits_T0IF
' Clear the Timer0 Overflow flag
 Inc Cnt.HighWord
 EndIf
 Retfie
High_Int_Sub_End

The buffer (about 100 bytes is enough, since that covers an average of
30 MIDI commands) should be allocated in protected RAM in upper
memory. The mechanism makes use of read and write pointers to
access this buffer. If the buffer fills up, we have to deal with a latency
of roughly 30ms, about the maximum that is tolerable for real time
applications.

Since timing is very critical in the kind of applications we are dealing
with here, we have set up a second high-priority interrupt for one of
the timers. Although most PIC controllers in this series have 4 built-in
timers, you have to be careful in the selection since some of them are
used by the built-in PWM generators. Timer0 is the best choice as it
can be programmed with a /256 prescaler. All built-in timers are only
16 bit wide. In order to get a much wider range for velocity control in
automata and also to make it possible to handle all sorts of slower
periodic events (vibrato mechanisms and shakers are a good example),
we use the timer interrupt to increment the high word in a dword
variable used as a 32-bit counter. The lowword is a copy of the timer
value itself. There is an obvious penalty in doing this, as these
microcontrollers are 8-bit oriented and therefore each handling of a
dword requires at least 4 clock cycles.

The midi parser reads incoming data from the circular buffer and
filters out all commands implemented for the robot. Here is an
example of the coding:

 Midi_Parse:
 If Bytein > Pitchbend_Status Then
 If Bytein > 253 Then '254 =
midiclock, 255= reset or no byte in buffer
 'midiclock
can interrupt all other msg's...
 '255 had to
be intercepted since thats what we get when no new byte
flows in
 GoTo Midi_Parse_End 'throw
away...
 Else

 Clear statusbyte 'reset the
status byte
 GoTo Midi_Parse_End 'throw away
 End If
 EndIf
 If Bytein > 127 Then 'status byte
received, bit 7 is set
 Clear statusbyte 'if on
another channel, the statusbyte needs a reset
 Select Bytein 'eqv to
Select case ByteIn
 Case NoteOff_Status
 statusbyte = Bytein
 set noteUit 'reset value
255. Cannot be 0 !!!
 set release '0 is a valid
midi note!
 Case NoteOn_Status
 statusbyte = Bytein
 set noteAan
 set velo
 Case Keypres_Status
 statusbyte = Bytein
 set notePres
 set pres
 Case Control_Status
 statusbyte = Bytein
 set Ctrl
 set value
 Case ProgChange_Status
 statusbyte = Bytein
 set prog
 Case Aftertouch_Status
 statusbyte = Bytein
 set aft
 Case Pitchbend_Status
 statusbyte = Bytein
 set pblsb
 set pbmsb
 End Select
 Else
'midi byte is 7 bits
 Select Case statusbyte
 Case 0 'not
a message for this channel
 GoTo Midi_Parse_End
'disregard
 Case NoteOff_Status
 If noteUit = 255 Then
 noteUit = Bytein
 Else
 release = Bytein
'message complete, so we can do the action...
 If Notes[noteUit] > 0
Then
 GoSub NoteOff 'do
the required action
 Else
 set noteUit
'reset , no action
 End If
 EndIf
 Case NoteOn_Status
 If noteAan = 255 Then
 noteAan = Bytein
 Else
 velo = Bytein
 Select Case
Notes[noteAan] 'check the look-up for functionality

 Case NoNote
' = 0, disregard: not implemented note
 set noteAan
' reset the note
 Case OnOff
' =1, case note on/off only, no pulse
 GoSub NoteOn
 Case Pulsing
 GoSub
NotePulse ' =2 , pulse only
 End Select
 EndIf
 Case Keypres_Status
 If notePres = 255 Then
 notePres = Bytein
 Else
 pres = Bytein
 GoSub KeyPres
 EndIf
 Case Control_Status
 If Ctrl = 255 Then
 Ctrl = Bytein
 Else
 value = Bytein
 GoSub Controller
 EndIf
 Case ProgChange_Status
 If prog = 255 Then
'single byte message
 prog = Bytein
 GoSub ProgChange
 EndIf
 Case Aftertouch_Status
 If aft = 255 Then
'single byte message
 aft = Bytein
 GoSub Aftertouch
 EndIf
 Case Pitchbend_Status
'two bytes message
 If pblsb = 255 Then
 pblsb = Bytein
 Else
 pbmsb = Bytein
 GoSub Pitchbend
 End If
 End Select
 EndIf
 Midi_Parse_End:
'jump out of parser label

The 8 and 16 bit PIC controllers are very simple microprocessors and
therefore do not have multitasking, let alone multithreading,
implemented. This forces us to set up a multitasking system of our
own. To this purpose we also use the 32-bit hardware timer described
before. By examining the time counter, tasks can be scheduled with
adequate precision. The critical issue is to spread code - in particular if
any serious math is involved - over as many tasks as is practical. If
this rule is not observed in coding, the automaton will suffer
considerably from timing jitter.

Fully documented generic source code is available on request. Many
of our webpages devoted to our robots also contain links to the
complete source code for the firmware driving them. We do not insert

it here, for there are frequent updates and every robot has its own
variations on the basic firmware. Also, the details of the code depend
quite a bit on the type of PIC processor that should run it. As a general
rule, we avoid loading too many tasks and functions into any single
controller even though there is plenty of RAM available. We prefer to
use many processors running in parallel and each with a very small
subset of tasks to perform. One of the many advantages of this
approach is that when a failure occurs (6), generally only a small
section of the robot becomes non-functional.

Notes:

(1) Fairly complete catalogue of all our automated and other
instruments.

(2) Composers' guide to the M&M robot orchestra

(3) More texts by the author with regard to robotics and sensors

(4) Software utility for the calculation of conical and flat valves (link
to the source code). The compiled program (compiled with the
PowerBasic Console compiler) is here, and requires our maths library
g_indep.dll

(5) This survey only deals with the mechanics and control of
expressive possibilities in automata: the expressive use of such
automata in music is a completely different story. That story is told in
part in my composition teaching, my lectures, my composition
software projects (GMT) and in my articles on sensor technologies
used to translate the expressive properties of human gesture into data
that can be used to control automata and other sound-generating
devices.

(6) Needless to say, the firmware should be properly debugged and
tested before any automaton is passed into the hands of users and
composers. Nevertheless failures unrelated to simple bugs do occur
every so often. The most common failure we have encountered is
latch-up conditions on the part of the PIC controllers. A complete
separation of the power supply for the controllers from any controlled
circuitry and attached devices seems to be mandatory. VDRs as well
as protection diodes on all input pins carrying signals from remote
sensors or circuitry seem to help out as well (Ellison, 2009). Earth
returns have to have as low resistance and impedance as possible. To
achieve this we often use 3 mm-thick red copper bars for common
earth connections

This survey was first written and published in 1987. It undergoes
continuous updates as our research and experience in this area
expands and progresses. Feel free to reference it, but please always
link to the original source.

Credits & Acknowledgments:

The firmware for a few of the Microchip PIC based controllers in the
robots and automata described here was developed in close

file:///C:/LogosWebsite/godfried/publikaties-god.html
file:///C:/LogosWebsite/instrum_gwr/bomi/g_indep.dll
file:///C:/LogosWebsite/instrum_gwr/bomi/Frustum_bomi.exe
file:///C:/LogosWebsite/instrum_gwr/bomi/Frustum_bomi.bas
file:///C:/LogosWebsite/godfried/publikaties-god.html
file:///C:/LogosWebsite/instrum_gwr/manual.html
file:///C:/LogosWebsite/instrum_gwr/automatons.html
file:///C:/LogosWebsite/instrum_gwr/automatons.html

collaboration with the engineer Johannes Taelman. The MPLAB
platform, provided by Microchip, was used.

Many experiments on electromagnetic devices have been carried out
with the assistance of Ph.D. student Troy Rogers. Shaking devices
were researched in collaboration with Ph.D. student Laura Maes.

Part of the research results presented here were obtained thanks to the
support of the Hogeschool Ghent, School of Arts, where I have been
employed up to 2014 as a full- time post-doctoral researcher, paid
70% of a normal wage however. Now the research goes on under the
auspices of both the Orpheus Institute and Ghent State University.

Thanks to the Logos Foundation, up to 2016 funded by the Flemish
Government, where my instrument building workshop and electronic
research lab are based. They also provide me with all the facilities to
bring this research to artistic and presentable results. Since 2017
Logos Foundation lost all it's funding due to corruption in the advisory
boards and thus all research is now paid for by the author solely.

Manufacturers of electromechanical devices discussed here:

• August Laukhuff Gmbh [stopped in 2021]
• Heuss Gmbh
• Kuhnke Gmbh
• Tremba Gmbh
• Lucas Ledex, now: Saia Burgess: http://www.saia-burgess.com
• Black Knight Ltd.
• Emessem Solenoid Company Ltd. , now: Magnet-Schultz Ltd. e-mail:

sales@emessem-solenoid.co.uk.
• Algoet Veren NV: this is the factory where we have our springs made to

our specifications.
• Sowter Transformers Ltd. This is where we have our custom power

transformers wound.
• Oxford Transformers Ltd. (Line level audio transformers)
• Italvibras (vibratory motors) http://www.vibtec.com. e-mail:

sales@vibtec.com
• Pyleaudio (compression drivers): http://www.pyleaudio.com
• Lanoye Bvba: custom-made mills for the construction of conical valve

seatings
• Penny+Giles, tilt sensors: +44(0)1202409409.
• Pepperl+Fuchs, inductive proximity sensors.
• Siemens, Sinamics motor controllers

Software Packages used for robot development and testing:
• MPLAB (Microchip)
• Positron Compiler (both 8 and 16 bit processors)
• PowerBasic Windows Compiler
• PowerBasic Console Compiler
• PD
• Windows 11 (Microsoft)
• GMT (Logos Foundation)
• Sonar / Cakewalk (Twelve Tone Systems)
•

file:///C:/LogosWebsite/studio.html
file:///C:/LogosWebsite/studio.html
file:///C:/LogosWebsite/atelier/atelier.html
file:///C:/LogosWebsite/index.html

Bibliographical references:

BENADE, Arthur H., "Fundamentals of Musical Acoustics", 2nd
edition, ed. Dover Publications Inc, New York,1990 [ISBN 0-486-
26484-x]

BOWERS, David Q., "Encyclopedia of automatic musical
instruments", Vestal Press, New York, 1972 [ISBN 0-911572-08-2]

BROOKS, Rodney A., "Flesh and Machines. How Robots Will
Change Us", ed. Pantheon Books, NY 2002

BUCHNER, Alexander "Mechanical Musical Instruments",
ed.Greenwood Press, Westport, Connecticut, 1978. [ISBN 0-313-
20440-3]

COURANT Richard and FRIEDRICHS, Kurt Otto "Supersonic Flow
and Shock Waves", ed. Springer-Verlag, NY 1999. [ISBN 0-387-
90232-5]

CRAENEN, Paul "Gecomponeerde uitvoerders", Ph.D.Thesis, Leiden
University, 2011

DUFFIN, William John, "Electricity and Magnetism", ed. W.J.Duffin
Publishing, Cottingham East Yorkshire, 2001. [ISBN 0-9510438-1-1]

ELLISON, Cliff, "Latch-Up Protection For MOSFET Drivers",
Microchip application note AN763, 2009 [web]

HAYT, William H. "Engineering Electromagnetics", ed. McGraw-Hill
Inc, Tokyo, 1974 [ISBN 0-07-027390-1]

MAES, Laura, RAES, Godfried-Willem, ROGERS, Troy "The Man
and Machine Robot Orchestra at Logos", in: Computer Music Journal,
Vol.35,nr.4, Winter 2011, p.28-48.

ORD-HUME, Arthur W.J.G, "Barrel Organ", ed. George Allen &
Unwin, London,1978 [ISBN 004789005-3]

RAES, Godfried-Willem, "Bomi, an experimental organ with
advanced expressive possibilities", Paper, ed. ARIP, Ghent, march
2011

RAES, Godfried-Willem, "Logos @ 50, het kloppend hart van de
avant-gardemuziek in Vlaanderen", book, ed. Stichting Kunstboek,
Oostkamp 2018, 224 blz.

TRIMPIN, Gerhard, "Contraptions for Art and Sound", ed. Univ. of
Washington Press, 2011 [ISBN 978-0-295-99109-2]

VAN DIJK, Marian (ed.), "Robots love Music", ed. Museum
Speelklok, Utrecht 2018

Last revision: December 23th, 2021.

mailto:godfriedwillem.raes@logosfoundation.org
file:///C:/LogosWebsite/godfried/instrum-god.html
mailto:godfriedwillem.raes@logosfoundation.org

